よく計画されたビーガン食の推奨事項:主要な栄養素

English

以下の推奨事項は、オリエンテーションとしての一般的なガイドラインです。
厳密にガイドラインを守る必要はありません。

1)ビタミンB12

以下の3つのオプションのいずれかに従ってください。[1–4]

- 機能強化食品またはサプリメントから2~5μgを1日2回  [5–11]
- サプリメントから10~200μgを1日1回  [6,9–14 ]
- サプリメントから2000~2500μgを週に1回  [7,10,11,15–17]

2) カルシウム

カルシウムが豊富な食品を毎日食べてください。
目標は1日あたり少なくとも600 mgのカルシウムを摂取することです。[2,18–27]
以下の中から少なくとも1つを毎日選択してください。

- カルシウム強化植物性牛乳 1杯(例えば豆乳)
ラベルに牛乳と同じように、100 mlあたり120 mgのカルシウムが含まれていることが明記されたものである必要があります。[3,22,27–30]
- その他のカルシウム強化食品  [22,27,29,31]
- 200〜400 gの調理済みの濃い緑の葉野菜(これらの緑の野菜はカルシウムが多く、シュウ酸が少ないはずです。)
例えば:
  • - チンゲン菜
  • - ケール
  • - コラード菜
  • - ブロッコリーラーブ
  • - ブロッコリー  [22,27,30]
  • - ナパキャベツ
  • - タンポポの葉
  • - イラクサの葉
(ほうれん草やチャードはカルシウムのバイオアベイラビリティーが低いため、カルシウム源としてはあまり推奨できません。)
- 生(未調理)のナパキャベツ約500グラム
- 中華豆腐200グラム (中華豆腐はにがりではなく硫酸カルシウムから作られています。)[22,27–30]
-カルシウムが豊富なミネラルウォーター(ボトルのラベルを確認し、1日あたり少なくとも300 mgのカルシウムが含まれているものを選択してください。[32,33])
- 乾燥イチジク6個(約100グラム)&オレンジ3個  [22]


3) ビタミンD

夏には
- 毎日15~30分、昼間の太陽光を浴びるようにしましょう。
毎日少しづつの日光を浴びる、もしくは、1週間に1度か2度たくさんの日光を浴びることが良いでしょう。
影が身長よりも長い時間帯(早朝と夕方)、あなたは少しのビタミンDしか合成できません。影が短い、すなわち、あなたの身長よりも短い時間帯(真昼)、あなたは多くのビタミンDを合成できます。
日焼けしないようにご注意を!

…または…

-冬の時期のように、ビタミンDサプリメントを使用してください。
太陽光を完全に避けないでください。


冬の時期には(「ビタミンDの冬」)。
- サプリメントから1日25μg(~1000 IU)のビタミンDを摂取してください。[2,3,22,27,34–42]

"ビタミンDの冬 "とは、太陽光を浴びても体がビタミンDを作れない状態のことであり、
地球上の住む場所(緯度)によって異なります。
"ビタミンDの冬"
- 北35°と南35°の間(たとえば、沖縄):「冬のビタミンD」はまったくありません。肌を定期的に直射日光にさらすことで、一年中ビタミンDを合成することができます。[43]
- 35°から40°北または南(たとえば、東京):12月と1月
- 40°から50°北または南(たとえば、北海道):11月から2月まで
- 50°(またはそれ以上)北または南:10月から3月(またはそれ以降)


4) ヨウ素

次のいずれかのオプションを選択してください。[2,3,36,44–52]
- 週に数回の海藻(例えば 海苔またはワカメなど)
-ヨウ素化塩(小さじ1杯あたり40〜240 µgのヨウ素が含まれています。量は購入先の会社によって異なるので、ラベルを確認してください。「海塩」は通常ヨウ素化されていません。)[53–55]
-ヨウ素サプリメント(またはヨウ素含有サプリメント)から1日あたり100〜200 µgのヨウ素を摂取してください。
過度ののヨウ素の摂取(たとえば、過度の海藻摂取)を避けてください。


5) オメガ-3脂肪酸

これらのオプションのいずれかを毎日選択してください。[18,29,56–61]
以下の推奨事項は、一般的に女性よりも食事量が多い男性向けです。
女性の場合は、少なめで十分です。

-約10個のクルミ(約40グラム)
- 亜麻仁油 小さじ1~2杯 [56]
- 合挽き亜麻仁 大さじ2  [56,62,63]
- チアシード 大さじ1〜2  [61,64–66]
- ヘンプシードオイル 大さじ1~2  [56]
- ヘンプシード 1/4カップ
- ヘンプシード皮なし大さじ1〜2
- 冷圧菜種油大さじ2~3  [56]

オプションとして ...(平均的なビーガンに対してこれを推奨するための多くの証拠はありません)。
上記の推奨事項の半分を使用してください - そして、ビーガンDHAサプリメントを追加してください。
(DHAはドコサヘキサエン酸を意味します。ビーガンDHAは特定の微細藻類から生成されます。)
- DHA 200~300mgを2~3日に1回 [56,59–61,67–69]


6) 鉄

マメ科植物を食べてください。(豆腐、枝豆、納豆、ひよこ豆、レンズ豆、グリーンピース、緑豆、インゲン豆、白豆、ピーナッツ、など) [25,70,71]


追加のヒント:
- ビタミンCが豊富な食品を鉄分が豊富な食品と同時に食べると(レモンジュースや豆腐など)、ビーガン食品からの鉄の吸収量が増加します。[70,72–75]
- 食事と一緒にコーヒーやお茶を飲むと、鉄の吸収量が低下します。[72–76]
- 鋳鉄製の調理器具でトマトソース(その他、少し酸味のあるソース)を調理すると、ソースに含まれる鉄分が増えます。[75–78]



7) 亜鉛

マメ科植物、ナッツ、種子を食べてください。[2,29,79,80]


8) セレン

次のオプションから1つを選択してください(1つだけ)。[36,81–83]


- 1日あたり約1〜2個のブラジルナッツ [84–87]
- サプリメント(セレノメチオニン)から1日50~60μgのセレンを摂取する [84,87–92]

過度の量を摂取しないでください。
確かではありませんが、日本の多くの土壌はセレンが豊富だと言われています。[93–100]
したがって、これらのセレンの推奨事項は、ヨーロッパ在住のビーガンに比べて、日本在住のビーガンには少なめで良い可能性があります。
米国、カナダ、ベネズエラにお住まいの方は、これらの推奨事項を無視することができます。これらの国の土壌は、多くの場合セレンが豊富だからです。[101–104]


9) ビタミンA

定期的に、濃い緑色の野菜、オレンジ色の果物、およびオレンジ色の野菜を食べてください。[3,36,105]

プロビタミンA(ベータカロチン)の優れた供給源としては、調理したニンジン、ニンジンジュース、カボチャ、オレンジサツマイモ、濃い緑の葉野菜、赤唐辛子、オレンジ色の果物(例えば、カキノキ、マンゴー、ネクタリン、みかん、アプリコット)などが含まれます。


10) タンパク質

マメ科植物を毎日食べてください。また、ナッツ、種子、および全粒穀物も食べましょう。[3,106–108]
ビーガンタンパク質の良い情報源はマメ科植物と穀物の混合物です(例えば米と豆腐)。
キノア、アマランス、ピスタチオ、麻の種子もタンパク質の優れた供給源です(マメ科植物に匹敵する)。
ヴィーガン用のプロテインパウダーからの摂取も効果的です。
十分なカロリーを摂取するようにしてください。ほとんどのヴィーガンは十分なカロリーを摂取できていますが、そうしなかった場合、摂取したたんぱく質がカロリーとして消費されてしまい、結果的にたんぱく質が枯渇し、筋肉量が減ってしまう可能性があります。






健康的なヴィーガンライフスタイル →







🤑 amazon.co.jp 💰






書誌

1. Johnsen, J. B. & Fønnebø, V. Vitamin B12-mangel ved strengt vegetabilsk kosthold. Hvorfor følger noen et slikt kosthold, og hva vil de gjøre ved B12-mangel? Abstract. Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke 111, 62–64 (1991).

2. Schüpbach, R., Wegmüller, R., Berguerand, C., Bui, M. & Herter-Aeberli, I. Micronutrient status and intake in omnivores, vegetarians and vegans in Switzerland. European journal of nutrition 56, 283–293; 10.1007/s00394-015-1079-7 (2017).

3. Sobiecki, J. G., Appleby, P. N., Bradbury, K. E. & Key, T. J. High compliance with dietary recommendations in a cohort of meat eaters, fish eaters, vegetarians, and vegans: results from the European Prospective Investigation into Cancer and Nutrition-Oxford study. Nutrition research (New York, N.Y.) 36, 464–477; 10.1016/j.nutres.2015.12.016 (2016).

4. Woo, K. S., Kwok, T. C. Y. & Celermajer, D. S. Vegan diet, subnormal vitamin B-12 status and cardiovascular health. Nutrients 6, 3259–3273; 10.3390/nu6083259 (2014).

5. Bor, M. V. et al. Daily intake of 4 to 7 microg dietary vitamin B-12 is associated with steady concentrations of vitamin B-12-related biomarkers in a healthy young population. The American journal of clinical nutrition 91, 571–577; 10.3945/ajcn.2009.28082 (2010).

6. Carmel, R. in Modern nutrition in health and disease, edited by Shils ME, Shike M, Ross AC, Caballero B & Cousins RJ (Lippincott Williams & Wilkins, Philadelphia, 2006), Vol. 10, pp. 482–497.

7. IOM. Institute of Medicine (IOM): Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline (Washington (DC), 1998).

8. Luhby, A. L., Cooperman, J. M., Donnenfeld, AM: Herrero, JM, Teller, D. N. & Wenig, J. B. Observations on transfer of vitamin B12 from mother to fetus and newborn. Am J Dis Child 96, 532–533 (1958).

9. Haddad, E. H., Berk, L. S., Kettering, J. D., Hubbard, R. W. & Peters, W. R. Dietary intake and biochemical, hematologic, and immune status of vegans compared with nonvegetarians. The American journal of clinical nutrition 70, 586S-593S (1999).

10. Heyssel, R. M., Bozian, R. C., Darby, W. J. & Bell, M. C. Vitamin B12 turnover in man. The assimilation of vitamin B12 from natural foodstuff by man and estimates of minimal daily dietary requirements. The American journal of clinical nutrition 18, 176–184 (1966).

11. Obeid, R., Fedosov, S. N. & Nexo, E. Cobalamin coenzyme forms are not likely to be superior to cyano- and hydroxyl-cobalamin in prevention or treatment of cobalamin deficiency. Molecular nutrition & food research 59, 1364–1372; 10.1002/mnfr.201500019 (2015).

12. Adams, J. F., Ross, S. K., Mervyn, L., Boddy, K. & King, P. Absorption of cyanocobalamin, coenzyme B 12 , methylcobalamin, and hydroxocobalamin at different dose levels. Scandinavian journal of gastroenterology 6, 249–252 (1971).

13. Carmel, R. Mandatory fortification of the food supply with cobalamin: an idea whose time has not yet come. Journal of inherited metabolic disease 34, 67–73; 10.1007/s10545-010-9150-2 (2011).

14. Deshmukh, U. S. et al. Effect of physiological doses of oral vitamin B12 on plasma homocysteine: a randomized, placebo-controlled, double-blind trial in India. European journal of clinical nutrition 64, 495–502; 10.1038/ejcn.2010.15 (2010).

15. Berlin, H., Berlin, R. & Brante, G. Oral treatment of pernicious anemia with high doses of vitamin B12 without intrinsic factor. Acta medica Scandinavica 184, 247–258 (1968).

16. Donaldson, M. S. Metabolic vitamin B12 status on a mostly raw vegan diet with follow-up using tablets, nutritional yeast, or probiotic supplements. Annals of nutrition & metabolism 44, 229–234 (2000).

17. Gomollón, F. et al. Oral cyanocobalamin is effective in the treatment of vitamin B12 deficiency in Crohn’s disease. Nutrients 9; 10.3390/nu9030308 (2017).

18. Appleby, P. N. & Key, T. J. The long-term health of vegetarians and vegans. The Proceedings of the Nutrition Society 75, 287–293; 10.1017/S0029665115004334 (2016).

19. Appleby, P., Roddam, A., Allen, N. & Key, T. Comparative fracture risk in vegetarians and nonvegetarians in EPIC-Oxford. European journal of clinical nutrition 61, 1400–1406; 10.1038/sj.ejcn.1602659 (2007).

20. Dyett, P., Rajaram, S., Haddad, E. H. & Sabate, J. Evaluation of a validated food frequency questionnaire for self-defined vegans in the United States. Nutrients 6, 2523–2539; 10.3390/nu6072523 (2014).

21. Fang, A. et al. Long-term low intake of dietary calcium and fracture risk in older adults with plant-based diet: a longitudinal study from the China Health and Nutrition Survey. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 31, 2016–2023; 10.1002/jbmr.2874 (2016).

22. Mangels, A. R. Bone nutrients for vegetarians. The American journal of clinical nutrition 100 Suppl 1, 469S-75S; 10.3945/ajcn.113.071423 (2014).

23. Morales-Torres, J. & Gutiérrez-Ureña, S. The burden of osteoporosis in Latin America. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 15, 625–632; 10.1007/s00198-004-1596-3 (2004).

24. Nachshon, L. & Katz, Y. [The importance of “milk bones” to “wisdom bones” - cow milk and bone health - lessons from milk allergy patients]. Abstract. Harefuah 155, 163-6, 195-6 (2016).

25. Rizzo, N. S., Jaceldo-Siegl, K., Sabate, J. & Fraser, G. E. Nutrient profiles of vegetarian and nonvegetarian dietary patterns. Journal of the Academy of Nutrition and Dietetics 113, 1610–1619; 10.1016/j.jand.2013.06.349 (2013).

26. Thorpe, D. L., Knutsen, S. F., Beeson, W. L., Rajaram, S. & Fraser, G. E. Effects of meat consumption and vegetarian diet on risk of wrist fracture over 25 years in a cohort of peri- and postmenopausal women. Public health nutrition 11, 564–572; 10.1017/S1368980007000808 (2008).

27. Tucker, K. L. Vegetarian diets and bone status. The American journal of clinical nutrition 100 Suppl 1, 329S–35S; 10.3945/ajcn.113.071621 (2014).

28. Messina, V. & Messina, M. Soy products as sources of calcium in the diets of Chinese americans. Journal of the American Dietetic Association 110, 1812-3; author reply 1813; 10.1016/j.jada.2010.10.020 (2010).

29. Reid, M. A., Marsh, K. A., Zeuschner, C. L., Saunders, A. V. & Baines, S. K. Meeting the nutrient reference values on a vegetarian diet. The Medical journal of Australia 199, S33-40 (2013).

30. Weaver, C. M., Proulx, W. R. & Heaney, R. Choices for achieving adequate dietary calcium with a vegetarian diet. The American journal of clinical nutrition 70, 543S-548S (1999).

31. de Abajo, Francisco J. de, Rodríguez-Martín, S., Rodríguez-Miguel, A. & Gil, M. J. Risk of Ischemic Stroke Associated With Calcium Supplements With or Without Vitamin D: A Nested Case-Control Study. Journal of the American Heart Association 6; 10.1161/JAHA.117.005795 (2017).

32. Böhmer, H., Müller, H. & Resch, K. L. Calcium supplementation with calcium-rich mineral waters: a systematic review and meta-analysis of its bioavailability. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 11, 938–943; 10.1007/s001980070032 (2000).

33. Vitoria, I. et al. The calcium concentration of public drinking waters and bottled mineral waters in Spain and its contribution to satisfying nutritional needs. Nutricion hospitalaria 30, 188–199; 10.3305/nh.2014.30.1.7491 (2014).

34. Holick, M. F. The vitamin D deficiency pandemic: approaches for diagnosis, treatment and prevention. Reviews in endocrine & metabolic disorders; 10.1007/s11154-017-9424-1 (2017).

35. Ho-Pham, L. T., Vu, B. Q., Lai, T. Q., Nguyen, N. D. & Nguyen, T. V. Vegetarianism, bone loss, fracture and vitamin D: a longitudinal study in Asian vegans and non-vegans. European journal of clinical nutrition 66, 75–82; 10.1038/ejcn.2011.131 (2012).

36. Kristensen, N. B. et al. Intake of macro- and micronutrients in Danish vegans. Nutrition journal 14, 115; 10.1186/s12937-015-0103-3 (2015).

37. Outila, T. A., Kärkkäinen, M. U., Seppänen, R. H. & Lamberg-Allardt, C. J. Dietary intake of vitamin D in premenopausal, healthy vegans was insufficient to maintain concentrations of serum 25-hydroxyvitamin D and intact parathyroid hormone within normal ranges during the winter in Finland. Journal of the American Dietetic Association 100, 434–441; 10.1016/S0002-8223(00)00134-6 (2000).

38. Plehwe, W. E. & Carey, R. P. L. Spinal surgery and severe vitamin D deficiency. The Medical journal of Australia 176, 438–439 (2002).

39. Smith, T. J. et al. Estimation of the dietary requirement for vitamin D in adolescents aged 14-18 y: a dose-response, double-blind, randomized placebo-controlled trial. The American journal of clinical nutrition 104, 1301–1309; 10.3945/ajcn.116.138065 (2016).

40. Ustianowski, A., Shaffer, R., Collin, S., Wilkinson, R. J. & Davidson, R. N. Prevalence and associations of vitamin D deficiency in foreign-born persons with tuberculosis in London. The Journal of infection 50, 432–437; 10.1016/j.jinf.2004.07.006 (2005).

41. Vidailhet, M. et al. Vitamin D: still a topical matter in children and adolescents. A position paper by the Committee on Nutrition of the French Society of Paediatrics. Archives de pediatrie : organe officiel de la Societe francaise de pediatrie 19, 316–328; 10.1016/j.arcped.2011.12.015 (2012).

42. Dewansingh, P. et al. Supplemental protein from dairy products increases body weight and vitamin D improves physical performance in older adults. A systematic review and meta-analysis. Nutrition research (New York, N.Y.) 49, 1–22; 10.1016/j.nutres.2017.08.004 (2018).

43. Jäpelt, R. B. & Jakobsen, J. Vitamin D in plants: a review of occurrence, analysis, and biosynthesis. Frontiers in plant science 4, 136; 10.3389/fpls.2013.00136 (2013).

44. Davidsson, L. Are vegetarians an ‘at risk group’ for iodine deficiency? The British journal of nutrition 81, 3–4 (1999).

45. Elorinne, A.-L. et al. Food and nutrient intake and nutritional status of Finnish vegans and non-vegetarians. PloS one 11, e0148235; 10.1371/journal.pone.0148235 (2016).

46. Fields, C., Dourson, M. & Borak, J. Iodine-deficient vegetarians: a hypothetical perchlorate-susceptible population? Regulatory toxicology and pharmacology : RTP 42, 37–46; 10.1016/j.yrtph.2005.01.001 (2005).

47. Krajcovicová-Kudlácková, M., Bucková, K., Klimes, I. & Seboková, E. Iodine deficiency in vegetarians and vegans. Annals of nutrition & metabolism 47, 183–185 (2003).

48. Leung, A. M., Lamar, A., He, X., Braverman, L. E. & Pearce, E. N. Iodine status and thyroid function of Boston-area vegetarians and vegans. The Journal of clinical endocrinology and metabolism 96, E1303-7; 10.1210/jc.2011-0256 (2011).

49. Lightowler, H. J. & Davies, G. J. Assessment of iodine intake in vegans: weighed dietary record vs duplicate portion technique. European journal of clinical nutrition 56, 765–770; 10.1038/sj.ejcn.1601392 (2002).

50. Lightowler, H. J. & Davies, G. J. Iodine intake and iodine deficiency in vegans as assessed by the duplicate-portion technique and urinary iodine excretion. The British journal of nutrition 80, 529–535 (1998).

51. Kanaka, C., Schütz, B. & Zuppinger, K. A. Risks of alternative nutrition in infancy: a case report of severe iodine and carnitine deficiency. European journal of pediatrics 151, 786–788 (1992).

52. Remer, T., Neubert, A. & Manz, F. Increased risk of iodine deficiency with vegetarian nutrition. The British journal of nutrition 81, 45–49 (1999).

53. García-Casal, M. N. et al. Valores de referencia de hierro, yodo, zinc, selenio, cobre, molibdeno, vitamina C, vitamina E, vitamina K, carotenoides y polifenoles para la población venezolana. Archivos latinoamericanos de nutricion 63, 338–361 (2013).

54. Rohner, F. et al. Biomarkers of nutrition for development—iodine review. The Journal of nutrition 144, 1322S–1342S; 10.3945/jn.113.181974 (2014).

55. Zimmermann, M. B. & Andersson, M. Assessment of iodine nutrition in populations: past, present, and future. Nutrition reviews 70, 553–570; 10.1111/j.1753-4887.2012.00528.x (2012).

56. Davis, B. C. & Kris-Etherton, P. M. Achieving optimal essential fatty acid status in vegetarians: current knowledge and practical implications. The American journal of clinical nutrition 78, 640S-646S (2003).

57. Domenichiello, A. F., Chen, C. T., Trepanier, M.-O., Stavro, P. M. & Bazinet, R. P. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats. Journal of lipid research 55, 62–74; 10.1194/jlr.M042275 (2014).

58. Fayet-Moore, F., Baghurst, K. & Meyer, B. J. Four models including fish, seafood, red meat and enriched foods to achieve Australian dietary recommendations for n-3 LCPUFA for all life-stages. Nutrients 7, 8602–8614; 10.3390/nu7105413 (2015).

59. Harris, W. S. Achieving optimal n-3 fatty acid status: the vegetarian’s challenge… or not. The American journal of clinical nutrition 100 Suppl 1, 449S–52S; 10.3945/ajcn.113.071324 (2014).

60. Sanders, T. A. B. DHA status of vegetarians. Prostaglandins, leukotrienes, and essential fatty acids 81, 137–141; 10.1016/j.plefa.2009.05.013 (2009).

61. Saunders, A. V., Davis, B. C. & Garg, M. L. Omega-3 polyunsaturated fatty acids and vegetarian diets. The Medical journal of Australia 199, S22-6 (2013).

62. Demark-Wahnefried, W. et al. Flaxseed supplementation (not dietary fat restriction) reduces prostate cancer proliferation rates in men presurgery. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 17, 3577–3587; 10.1158/1055-9965.EPI-08-0008 (2008).

63. Hackshaw-McGeagh, L. E. et al. A systematic review of dietary, nutritional, and physical activity interventions for the prevention of prostate cancer progression and mortality. Cancer causes & control : CCC 26, 1521–1550; 10.1007/s10552-015-0659-4 (2015).

64. EFSA. Opinion on the safety of ‘Chia seeds (Salvia hispanica L.) and ground whole Chia seeds’ as a food ingredient. EFSA Journal 7, 996; 10.2903/j.efsa.2009.996 (2009).

65. Mohd Ali, N. et al. The promising future of chia, Salvia hispanica L. Journal of biomedicine & biotechnology 2012, 171956; 10.1155/2012/171956 (2012).

66. Ullah, R. et al. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review. Journal of food science and technology 53, 1750–1758; 10.1007/s13197-015-1967-0 (2016).

67. Cottin, S. C., Sanders, T. A. & Hall, W. L. The differential effects of EPA and DHA on cardiovascular risk factors. The Proceedings of the Nutrition Society 70, 215–231; 10.1017/S0029665111000061 (2011).

68. Geppert, J., Kraft, V., Demmelmair, H. & Koletzko, B. Microalgal docosahexaenoic acid decreases plasma triacylglycerol in normolipidaemic vegetarians: a randomised trial. The British journal of nutrition 95, 779–786 (2006).

69. Sarter, B., Kelsey, K. S., Schwartz, T. A. & Harris, W. S. Blood docosahexaenoic acid and eicosapentaenoic acid in vegans: associations with age and gender and effects of an algal-derived omega-3 fatty acid supplement. Clinical nutrition (Edinburgh, Scotland) 34, 212–218; 10.1016/j.clnu.2014.03.003 (2015).

70. Waldmann, A., Koschizke, J. W., Leitzmann, C. & Hahn, A. Dietary iron intake and iron status of German female vegans: results of the German vegan study. Annals of nutrition & metabolism 48, 103–108; 10.1159/000077045 (2004).

71. Gorczyca, D., Prescha, A., Szeremeta, K. & Jankowski, A. Iron status and dietary iron intake of vegetarian children from Poland. Annals of nutrition & metabolism 62, 291–297; 10.1159/000348437 (2013).

72. Craig, W. J. Iron status of vegetarians. The American journal of clinical nutrition 59, 1233S-1237S (1994).

73. Gibson, R. S., Heath, A.-L. M. & Szymlek-Gay, E. A. Is iron and zinc nutrition a concern for vegetarian infants and young children in industrialized countries? The American journal of clinical nutrition 100 Suppl 1, 459S–68S; 10.3945/ajcn.113.071241 (2014).

74. Hurrell, R. & Egli, I. Iron bioavailability and dietary reference values. The American journal of clinical nutrition 91, 1461S–1467S; 10.3945/ajcn.2010.28674F (2010).

75. Hunt, J. R. Moving toward a plant-based diet: are iron and zinc at risk? Nutrition reviews 60, 127–134 (2002).

76. Hunt, J. R. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. The American journal of clinical nutrition 78, 633S-639S (2003).

77. Quintaes, K. D. et al. Mineral migration and influence of meal preparation in iron cookware on the iron nutritional status of vegetarian students. Ecology of Food and Nutrition 46, 125–141; 10.1080/03670240701285079 (2007).

78. Sanders, T. A.B. in Human nutrition, edited by Geissler CA & Powers HJ (Churchill Livingstone Elsevier, Edinburgh, 2012), Vol. 12, pp. 355–363.

79. Saunders, A. V., Craig, W. J. & Baines, S. K. Zinc and vegetarian diets. The Medical journal of Australia 199, S17-21 (2013).

80. Ball, M. J. & Ackland, M. L. Zinc intake and status in Australian vegetarians. The British journal of nutrition 83, 27–33 (2000).

81. Hildbrand, S. M. Dissertation. Ludwig-Maximilians-Universität, 2015.

82. Hoeflich, J. et al. The choice of biomarkers determines the selenium status in young German vegans and vegetarians. The British journal of nutrition 104, 1601–1604; 10.1017/S0007114510002618 (2010).

83. Lightowler, H. J. & Davies, G. J. Micronutrient intakes in a group of UK vegans and the contribution of self-selected dietary supplements. The journal of the Royal Society for the Promotion of Health 120, 117–124 (2000).

84. Thomson, C. D., Chisholm, A., McLachlan, S. K. & Campbell, J. M. Brazil nuts: an effective way to improve selenium status. The American journal of clinical nutrition 87, 379–384 (2008).

85. Colpo, E. et al. A single consumption of high amounts of the Brazil nuts improves lipid profile of healthy volunteers. Journal of nutrition and metabolism 2013, 11348568653185; 10.1155/2013/653185 (2013).

86. Martens, I. B. G. et al. Selenium status in preschool children receiving a Brazil nut-enriched diet. Nutrition (Burbank, Los Angeles County, Calif.) 31, 1339–1343; 10.1016/j.nut.2015.05.005 (2015).

87. Dumont, E., Vanhaecke, F. & Cornelis, R. Selenium speciation from food source to metabolites: a critical review. Analytical and bioanalytical chemistry 385, 1304–1323; 10.1007/s00216-006-0529-8 (2006).

88. Benstoem, C. et al. Selenium and its supplementation in cardiovascular disease - What do we know? Nutrients 7, 3094–3118; 10.3390/nu7053094 (2015).

89. Ogawa-Wong, A. N., Berry, M. J. & Seale, L. A. Selenium and metabolic disorders: an emphasis on type 2 diabetes risk. Nutrients 8, 80; 10.3390/nu8020080 (2016).

90. Thomson, C. D. Assessment of requirements for selenium and adequacy of selenium status: a review. European journal of clinical nutrition 58, 391–402; 10.1038/sj.ejcn.1601800 (2004).

91. Wrobel, J. K., Power, R. & Toborek, M. Biological activity of selenium: revisited. IUBMB life 68, 97–105; 10.1002/iub.1466 (2016).

92. Xia, Y., Hill, K. E., Byrne, D. W., Xu, J. & Burk, R. F. Effectiveness of selenium supplements in a low-selenium area of China. The American journal of clinical nutrition 81, 829–834 (2005).

93. Karita, K., Hamada, G. S. & Tsugane, S. Comparison of selenium status between Japanese living in Tokyo and Japanese brazilians in São Paulo, Brazil. Asia Pacific journal of clinical nutrition 10, 197–199; 10.1046/j.1440-6047.2001.00262.x (2001).

94. Altansuvd, J., Nakamaru, Y. M., Kasajima, S., Ito, H. & Yoshida, H. Effect of long-term phosphorus fertilization on soil Se and transfer of soil Se to crops in northern Japan. Chemosphere 107, 7–12; 10.1016/j.chemosphere.2014.02.056 (2014).

95. Wai, K. M. et al. Relationship between Selected Trace Elements and Hematological Parameters among Japanese Community Dwellers. Nutrients 12; 10.3390/nu12061615 (2020).

96. Eguchi, A. et al. The relationship of maternal PCB, toxic, and essential trace element exposure levels with birth weight and head circumference in Chiba, Japan. Environmental science and pollution research international 26, 15677–15684; 10.1007/s11356-019-05009-0 (2019).

97. Oo, S. M. et al. Serum selenoprotein P, but not selenium, predicts future hyperglycemia in a general Japanese population. Scientific reports 8, 16727; 10.1038/s41598-018-35067-2 (2018).

98. Ma, C. et al. Health Risk Assessment and Source Apportionment of Mercury, Lead, Cadmium, Selenium, and Manganese in Japanese Women: An Adjunct Study to the Japan Environment and Children’s Study. IJERPH 17, 2231; 10.3390/ijerph17072231 (2020).

99. Tekeste, Z. et al. Determination of trace elements in Ethiopian, Vietnamese, and Japanese women using high-resolution IC-PMS. Nutrition (Burbank, Los Angeles County, Calif.) 31, 1243–1246; 10.1016/j.nut.2015.04.021 (2015).

100. Nakayama, S. F. et al. Blood mercury, lead, cadmium, manganese and selenium levels in pregnant women and their determinants: the Japan Environment and Children’s Study (JECS). Journal of exposure science & environmental epidemiology; 10.1038/s41370-019-0139-0 (2019).

101. Combs, G. F. (JR) & Combs, S. B. The role of selenium in nutrition (Academic Press, Orlando, 1986).

102. Combs, G. F. Selenium in global food systems. The British journal of nutrition 85, 517–547 (2001).

103. Mondragón, M. C. & Jaffé, W. G. Consumo de selenio en la ciudad de Caracas en comparación con el de otras ciudades del mundo. Abstract. Archivos latinoamericanos de nutricion 26, 343–352 (1976).

104. Surai, P. F. Selenium in nutrition and health (Nottingham University Press, Nottingham, 2006).

105. PAHO. Nutritional situation in the Americas. Epidemiological bulletin 15, 1–6 (1994).

106. Lousuebsakul-Matthews, V. et al. Legumes and meat analogues consumption are associated with hip fracture risk independently of meat intake among Caucasian men and women: the Adventist Health Study-2. Public health nutrition 17, 2333–2343; 10.1017/S1368980013002693 (2014).

107. Shams-White, M. M. et al. Dietary protein and bone health: a systematic review and meta-analysis from the National Osteoporosis Foundation. The American journal of clinical nutrition 105, 1528–1543; 10.3945/ajcn.116.145110 (2017).

108. Marsh, K. A., Munn, E. A. & Baines, S. K. Protein and vegetarian diets. The Medical journal of Australia 199, S7-S10 (2013).